CHAETOTAXY OF LAST INSTAR CATERPILLAR OF CHALCIOPE HYPPASIA (CRAM.) A BEAN DEFOLIATOR (NOCTUIDAE) G. P. SINGH AND S. C. GOEL PG-DEPARTMENT OF ZOOLOGY, SANATAN DHARM COLLEGE, MUZAFFARNAGAR-251001, INDIA. The relative length of coronal stem and frons, position of AF_2 , P_2 , puncture F_3 , ocellar and sub-ocellar groups on the head capsule; punctures on prothoracic-shield and setae of SD and L groups on the prothorax and SD_1 and SV groups of abdomen are enumerated and elaborated as characters of taxonomic significance in the chaetotaxy of C. hyppasia (Cram.). # INTRODUCTION Chalciope hyppasia (Cram.) amongst noctuids from subfamily Catocalinae is one of the important pest whose immature stages cause an appreciable amount of damage to bean crop in western Uttar Pradesh. Inview of the life history already studied by Singh & Goel (1986), it becomes rather essential to describe the immature caterpillars for purposes of identification. Larval chaetotaxy has proved to be an important taxa for such identification and remains constant even under different environmental conditions. Number of earlier workers on immature stages of Noctuidae have described chaetotaxy of classificatory significance (Forbes, 1910 & 1916; Fracker, 1915; Heinrich, 1916; Gerasimov, 1935; Issac and Rao, (1941). Hinton (1946) though evolved a system of chaetotaxy but Crumb (1934) happended to be earlier to utilize the same in the classification of subfamily Hypeninae. Ripley (1923), Gardner (1946, 1947 & 1948), Mukerjee & Singh (1951), Neunzing (1964), Bhattacharjee & Gupta (1971), Thakar & Srivastava (1983) are others to describe more noctuid caterpillars. The present study on C. hyppasia (Cram.) evolves more chaetotaxic details and furnishes more distinguishing features of taxonomic use. ## MATERIAL AND METHODS The caterpillars of *C. hyppasia* (Cram.) were collected from the field and reared in the laboratory on the bean leaves. The mature final instar caterpillars were preserved in KAAD for chaetotaxic studies. The head capsule was removed under a Stereoscopic Binocular Microscope, KOH treated caterpillars were then dissected laterally. The material cleared in acetic acid, dehydrated, and stained with acid fuschin for preparing the balsam mounts. Sketching was done with the help of camera lucida following Hinton's (1946) system of nomenclature with minor modifications. # OBSERVATION ON CHAETOTAXY OF CATERPILLAR # The head claetotaxy (Figs. 1a, b & 2) The head capsule of C. hyppasia (Cram.) with hypognathous type of orientation is spherical and light brown in colour. An inverted Y-shaped epicranial suture separates the two epicranial plates, running anterodorsally. The coronal stalk (CS) anteriorly bifurcates in two diverging frontoclypeal sutures An incomplete sclerotized ridge divides the encircling frontoclypeus (FC). triangular frontoclypeus into two unequal halves, an anterior clypeus (CL) and frons (F) behind. The frontoclypeus has three setae and a puncture namely, two setae C1 and C2 in the clypeal region, seta F1 and puncture Fa in the frontal region. Laterad on the clypeus, seta C1 longer than C2 lies slightly anterad to C2. Seta F1 lies at the level of A2 and OC4 and anterior of midfrons whereas puncture Fa anterodorsal to F1 and adjacent to middorsal line of frontoclypeus. The seta F₁ is as long as C₂. By the laterodorsal sides of frontoclypeus and adjacent to parietals the narrow adfrontals (AD) are characterised by equalized AF1 and AF2 with a puncture AFa. AF1 is slightly anterad to the level of OC3 whereas AF2 at the level of La, posterior to the coronal bifurcation and along the adfrontal suture. The puncture AFa lies closer to AF2 than AF1 and situated anterad to coronal bifurcation. However, the distance between AF1 and F1 is lesser to the distance of AF₁ and AF₂. The frontoclypeus and adfrontals proximally support to a cuticular anteclypeal region providing an articular surface for the labrum. Each epicranial plate is demarcated in different areas and characterised by 12 long, 4 minute setae and 6 punctures. The setae of anterodorsal group A₁, A_2 and A_3 with a puncture Aa lie inbetween ocellar and adfrontal groups. Seta A_1 posterad to antennal socket, is slightly anterior to the level of OC_5 . A_2 is laterad to A_1 and at the level of F_1 and OC_4 and A_3 being posterolateral to A_2 and posterodorsal to O_3 . Seta A_2 is closer to A_1 than to A_3 . $A_3 > A_1 > A_2$ lengthwise. A_3 is the largest seta on head capsule. Puncture A_2 is situated equidistant to A_2 and A_3 and at the level of OC_3 . The lateral group is characterised by a single seta L_1 having a dorsal puncture L_3 at the level of A_3 . P_1 and P_2 setae with a puncture P_3 represent the posterodorsal group. Seta P_3 lies posteriorly between P_3 and P_3 and P_4 is posteriorly between P_4 and P_4 is posterolateral to P_4 and is posterior most smaller tactile seta of the head capsule. Puncture P_4 lies dorsally close to P_4 . The vertical group has three minute setae P_4 , P_4 and P_4 and P_4 and P_4 and P_4 lies posterolateral to P_4 , P_4 posterolateral to P_4 and P_4 and P_4 still posterior most seta of the epicranium. Puncture P_4 is situated in between P_4 and P_4 . The ocellar group bearing six ocelli $(OC_1 - OC_6)$, three setae $(O_1 - O_3)$ and a puncture Oa are situated behind antennal socket. The five ocelli $(OC_1 - OC_5)$ are arranged in a semicircle whereas OC_6 anterior to OC_1 , at the margin of antennal socket. Seta O_1 lies ventrally close to OC_5 , O_2 posteroventral to OC_2 and O_3 posteroventral to OC_1 . $O_1 > O_2 > O_3$ lengthwise. puncture Oa lies between O_3 and OC_1 but closer to OC_1 than O_3 . The subocellar group lies posterior and ventral to the antennal socket and characterised by three setae SO_1 , SO_2 and SO_3 with a puncture SO_3 . SO_1 is situated anteroventral to OC_6 , SO_2 near and posteroventral to OC_6 and SO_3 posteroventral to SO_2 . Distance of SO_2 and SO_3 is more than the distance of SO_2 and SO_1 . $SO_1 > SO_2 = SO_3$ lengthwise. Puncture SO_3 lies equidistant between SO_1 and SO_3 . G_1 is the only ventral seta of the genal group having a puncture Ga. # The body chaetotaxy (Fig. 3) Prothorax (Th I): The squarish prothoracic shield is dark brown in colour, having extended into an outgrowth laterally. It is characterised by four tactile setae and three punctures. XD_1 and XD_2 , both lie in anterior half of the shield but XD_2 on an outgrowth of the shield. D_1 and D_2 lie situated posterodorsally to XD_1 and XD_2 respectively in the posterior half of the shield. XD_1 is shorter than XD_2 but both longer than D_1 and D_2 . The puncture XD_2 lies caudad to XD_1 , and XD_2 posterolateral to XD_2 and XD_2 dorsal to XD_2 . The two setae SD_1 and SD_2 near the posterolateral angle of the shield and dorsal to spiracle characterized the subdorsal group. The thin and delicate seta with pigmented socket SD_1 is anterior to lateral margin of the spiracle. L_1 and L_2 close to each other are identical to SD_2 and SD_1 respectively. SV_1 and SV_2 setae of subventral group Figs. 1-3. 1. Head capsule of last instar caterpillar of C. hyppasia (Cram.). (a) Dorsal view (b) Ventzal view 2. Lateral view. 3. Setal map of body segments of the same. are ventrad to the lateral group. SV_1 is shorter and anterior to SV_2 . V_1 of ventral group lies postcoxal in position. The microscopic setae lie in two groups viz. MXD_1 and MV, MXD_1 is very close to the caudal margin of the shield in between D_1 and D_2 . MV_2 and MV_3 are precoxal in their position. Meso-and Metathorax (Th II-Th III): The mesothorax is characterised by nine tactile and six microscopic setae. Setae D_1 , D_2 , SD_1 and SD_2 of dorsal and subdorsal groups are situated in a vertical line. D_1 and D_2 are approximately equal in size. Thin, delicate with pigmented socket, the seta SD_1 is equal in length to SD_2 . The lateral group is trisetosed having L_1 anterolateral to SD_1 . L_2 posterolateral to L_1 and L_3 ventral to L_1 . L_1 , L_2 and L_3 are at right angle to each other with $L_2 > L_1 > L_3$ lengthwise. Single seta SV_1 characterizes the subventral group and is dorsal in position to the coxa of the segment. V_1 of ventral group is identical to the preceding segment. The microscopic setae composed of three groups namely MD_1 lies at the anterior margin infront of D_2 . MSD_1 and MSD_2 are anterior to SD_1 and MV_1 , MV_2 and MV_3 are precoxal in their position. The most anterior seta is MV_1 , MV_2 is posteroventral whereas MV_3 anteroventral to MV_2 . The metathorax is identical to the preceding segment in its setal map except variation in the number of microscopic setae of the dorsal group. The additional seta MD_2 is posterodorsal to MD_1 . First abdominal to fourth abdominal segments (Ab I — Ab IV): These segments are characterized by ten tactile and three microscopic setae, each having an identical setal map. Equal sized setae D_1 and D_2 of dorsal group lie near the middorsal line of the segment where D_1 lies infront of D_2 and at the level of spiracle. SD_1 of subdorsal group is supraspiracular in position. The lateral group has three setae, L_1 is postspiracular, L_2 infraspiracular and L_3 posterolateral to L_2 . Thus the three making a triangle with $L_2 > L_1 > L_3$ lengthwise. The trisetosed subventral group also forms a triangular configuration like the lateral group. SV_1 is anteroventral to L_3 , SV_2 ventral to SV_1 and SV_3 posterior to SV_2 . $SV_1 = SV_2 > SV_3$ lengthwise. Seta V_1 lies below SV_3 and near the ventral margin of the segment. The microscopic seta MD_1 lies near the anterior margin of the segment and makes a longitudinal line with D_1 and D_2 . MSD_2 is prespiracular in position and MV_3 is anteroventral to SV_2 . Fifth and sixth abdominal segments (Ab V — Ab VI): Setae of the dorsal, sub-dorsal and lateral groups of leg bearing segments are identical to the preceding segments (Ab I to Ab IV). The lateral group becomes bisetosed, L₃ being absent. Subventral group is unisetosed with seta SV_1 lying dorsal to the coxa of the segment. The microscopic seta MD_1 lies anterior to D_1 whereas MSD_2 is prespiracular and MV_3 precoxal in position. Seventh and eighth abdominal segments (Ab VII — Ab VIII): Setae of the dorsal and subdorsal groups are identical to the preceding segments (Ab V and Ab VI). The three setae of the lateral group i e. L_1 being postspiracular, L_2 infraspiracular and L_3 posterolateral to L_2 . Ventral group is unisetosed having V_1 ventral to SV_1 . The microscopic setae MD_1 and MSD_2 are identical to the preceding segments and MV_3 lies anteroventral to SV_1 . Ninth abdominal segment (Ab IX): Ab IX is devoid of spiracle and characterized by six tactile and two microscopic setae. D_1 is near the middorsal line of the segment and D_2 anterolateral to D_1 SD₁ of Ab IX is identical to SD₁ of the thoracic segments and situated postero atral to D_2 . The lateral, subventral and ventral groups are unisetosed with setae L_1 , SV₁ and V₁ respectively lie ventral to SD₁, all in a straight line. The microscopic seta MD₁ migrates towards the lateral margin and lies infront of D_2 . MV₃ situated anteroventral to SV₁ near the anterior margin of the segment. Tenth abdominal segment (Ab X): Ab X is characterized by a pair of anal legs and a middorsal anal shield The anal shield has four tactile setae. CE_1 is situated in the centre and PL_1 , PL_2 and PL_3 are situated at the posterolateral margin of the shield. CE^1 lies longitudinally with PL_2 and transversly with PL_3 . # DISCUSSION The frons is characterized smaller than coronal stem whereas puncture Fa anterior to F₁ lies situated near the mid dorsal line are distinguishing features for the present noctuid C. hyppasia. Similar findings have also been described by Gardner (1945) in different noctuids and Singh (1951, 1956) in geometrids. Gardner (1947) and Bhattacharjee and Gupta (1971) further overweighed the location of Fa in classification of different noctuid species. Hence the presence of Fa in frontoclypeus appeared a generalized character and its position further may be takenup a subfamily feature in Noctuidae. Crumb (1934) while classifying Hypeninae, taken the relative length of P₁ more than P₂ and its position in relation to L₁ into classification. An identical condition is endorsed in C. hyppasia belonging to Catocalinae. The presence of three setae and a puncture Oa in the ocellar group, Oa being near and antered to OC1 in C. hyppasia has also been observed by Gerasimov (1935), Hinton (1946), Bhattacharjee and Gupta (1971) and Thakar and Srivastava (1983) in their respective noctuids. Further more, the three setae and a puncture present in subocellar group being a general feature of Noctuidae, in *C. hyppasia* their position is more akin to the condition described by Gerasimov (1935) in the same family. The presence of a single genal seta and a puncture recognized by Heinrich (1916), Ripley (1923), Gerasimov (1935), Bhattacharjee and Gupta (1971) and Thakar & Srivastava (1983) has also been described in *C. hyppasia*. However, earlier workers like Dyar (1896) and Forbes (1910) have not recognized this group in their respective noctuid. In present noctuid, the squarish prothoracic shield with extended lateromedian margin, possessed two pairs of setae XD1, XD2 and D1, D2 with three punctures. Fracker (1915), Garman (1921), Gerasimov (1935) and Hinton (1946) also assessed the shape, number of setae and punctures on the prothoracic shield of taxonomic significance in Noctuidae. But presence of all the three punctures XDa, XDb and XDc with their respective position in C. hyppasia appears specific for Catocalinae. The two setae of subdorsal group in C. hyppasia though the same length differ structurally, SD1 being thin, delicate and having a pigmented socket than SD₂. The same condition of SD₁ has also been repeated only in Ab IX. Hinton (1946), however, described the pigmented socket of SD₁ in the thorax of Agrotinae alone but the differentiation in the nature of SD1 and SD2 was not uncommon in Pyralidae. Nonetheless, the equal sized SD1 and SD2 were described by Thakar & Srivastava (1983) in another catocalid, A haea janata (L.). In present study the bisetosed lateral group has L₂ identical to SD₁ in the prothorax of C. hyppasia. The bisetosed condition in lateral group emphasized as an important character of Noctuidae by Gardner (1948) was later utilized to plan out three species of Plusia by Mukerjee and Singh (1951). Peterson (1962) also used this as a common feature for Noctuidae (=Phalaenidae) while describing the immature stages of Lepidoptera. Thakar & Srivastava (1983), however, overlooked L2 in Achaea janata. On uni, bi-and trisetosed condition of subventral group on Ab I and II, Gardner (1947) differentiated the subfamilies of Noctuidae. According to him, the trisetosed subventral group places C. hyppasia in Catocalinae. The presence of a single seta of SD group from Ab I-Ab VIII, Gardner (1946, 1947) described as the subfamily character but its supraspiracular position anterad to the level of spiracle in C. hyppasia is very much inaccordance to the position given in Gramodes stolida (Fabr.), another catocalid figured by him. SD₁ of Ab IX, though is identical to SD₁ of thoracic segments in C. hyppasia, Mukerjee and Singh (1951) described similar position for two species of Plusia nigrisigna and P, chelcytes but described SD1 as a normal seta in P. orichalcea. Hinton (1946) described SD2 on the spiracle bearing abdominal segments with its function being tactile. An identical seta since named as microscopic (MSD2) appears justified to assign proprioceptor after Hinton (1946) as observed on Ab I to Ab VIII in C. hyppasia. ### **ACKNOWLEDGEMENTS** The authors are thankful to Indian Council of Agricultural Research, New Delhi for funds under an adhoc research project, to Dr. S. L. Gupta (IARI) for identification of the species and to Dr. L. N. Mittal, Principal (S. D. College) for constant interest and facilities to work. ### REFERENCES - BHATTACHARJEE, N. S. & GUPTA, S. L. 1971. Identity of lepidopterous pest infesting wheat crop at Delhi. *Indian J Ent.* 33 (4): 435-451. - CRUMB, S. E. 1934. A classification of some noctuid larvae of the subfamily Hypeninae Entomologica Am. 14: 133-196 - Dyar, H. G 1896. Notes on the head setae of lepidopterous larvae with special reference to the appendages of *Perthera melshumerri*. J. N. Y. ent. Soc. 4: 92-93. - Forbes, W. T. M. 1910. A structural study of some caterpillars. Ann. ent Soc. Am. 3 (1): 94-143 - 1916. On certain caterpillars homologies. J. N. Y. ent. Soc. Am. 24: 137-142. - Fracker, S. B. 1915. The classification of lepidopterous larvae. Illinois biol Monogr. 2:1-169. - GARDNER, J. C. M. 1946. On the larvae of Noctuidae (Lepidoptera)-II. Trans. R. ent. Soc. Lond. 97: 237-252. - 1947. On the larvae of Noctuidae-III. For. Res. Inst 3:59-89. - 1948. On larvae of Noctuidae (Lepidoptera)-IV. Trans, R. ent. Soc. Lond. 99: 291-318. - GARMAN, H. 1921. Some neglected setae of lepidopterous larvae. Ann. ent. Soc Am. 14: - Gerasimov, A. M 1935. Zur Frage der Homodynamic der Borsten von Schmetheralingraupen. Zool Anz 112:117-194. - Heinrich, C. 1916. On the taxonomic value of some larval characters in the lepidoptera. *Proc.* ent. Soc. Wash. 18: 154-164. - HINTON, H. E. 1946. On the homology and nomenclature of the setae of the lepidopterous larvae with some notes on the phylogeny of Lepidoptera. *Trans. R. ent Soc. London* 97: 1-37. - Issac, P. V. & Rao, K. V. 1941. A key for the identification of the larvae of the known lepidopterous borers of Sugarcane in India based on morphological characters. *Indian J. agric. Sci.* 11 (5): 795-803. - MUKERJEE, S. & SINGH, H. 1951. Studies on the chaetotaxy of larvae of *Plusia* species (Lepidoptera: Phalaenidae) *Proc. R. ent. Soc. Lond.* 2 (B): 15-24. - NEUNZING, N. H. 1964. The eggs and early instar larvae of Heliothis zea and Heliothis virescens (Lepidoptera: Noctuidae). Ann. ent. Soc. Am. 57: 98-102. - Peterson, A. 1962. Larvae of insects. An introduction to Nearctic species Part I. Edward Brothers, Ann. Arbor. - RIPLEY, L. B. 1923. The external morphology and postembryology of noctuid larvae. III. Illinois biol. Monogr. 8: 1-169. - SINGH, G. P. & Goel, S. C. 1986. Life history of *Chalciope hyppasia* (Cram.), a bean defoliator (Noctuidae), *J. Bombay nat. Hist. Soc.* (in press). - SINGH, B 1951. Immature stages of Indian Lepidoptera No 8. Geometridae. *Indian For. Rec.* 8 (7): 67 158. - 1956. Some more Indian Geometrid larvae (Lepid) ptera) with a note on the identity of components of various groups of setae *Ibid* 9 (6): 131-163. - THAKAR, A V. & SRIVASTAVA, R. P. 1983. Chaetotaxy of eight noctuid caterpillars. Bull Ent. 24 (2): 83-94.