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ABSTRACT 

 
Like all multicellular organisms fish also lives in close association with microorganisms. They live in a 

symbiotic relationship and the bacteria provide protection, immunity and metabolic strength to the host and in 

return, the host gives nutrient-enriched media to it. Gut microbes of fish secret amylase, lipase, cellulase, 

protease, chitinase etc. and they play a significant role in digestion. To date, most of the studies on gut 

microbiota have emphasized the mammal. Contrary to this, information about the host-microbe interactions in 

fishes is limited. Therefore, a better understanding of this topic is the need of the hour. Exogenous enzymes can 

be produced by the gut microbes such as Lactobacillus spp., Pseudomonas spp., and Vibrio spp. etc to improve 

the digestion of food and degradation of complex and large molecules, such as protein, starch, and chitin. 

Similarly, when the composition of microbiota changes many biosynthesis and metabolism pathways of 

carbohydrates, amino acids, and lipids also change. Epithelial absorption of fatty acid is facilitated by the 

colonization of the gut microorganisms, this colonization also protects the host against pathogenic bacteria. To 

achieve sustainable disease control and nutrient enhancement strategies in aquaculture practices an 

understanding of the dynamics and functions of the gut microbial community in fish is necessary as it will 

enable a more profound selection of the beneficial microorganisms.   

 

Keywords: Enzymes; fish gut-bacteria; immunity; microbes; probiotics.  

 

1. INTRODUCTION 
 

Fishes are poikilothermic aquatic animals and they are 

considered as one of the best source of animal protein. 

They are rich in omega-3 fatty acids, vitamins like B2 

and D and minerals such as iron, calcium, 

phosphorus, iodine, magnesium, zinc and potassium. 

During the last few decades, the consumption of              

fish has increased as the world population increased 

[1].  
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Bacterial flora resides in the skin, intestine and 

various other organs of fishes [2]. Two types of 

bacteria are found inside the GI tract of fishes. One 

considered as transient (allochthonous), whereas the 

others mucus associated microflora (autochthonous) 

[3, 4]. The bacteria and host lives in symbiotic 

relationship as the host provide shelter to the microbe 

in return it helps the host with metabolic, protective 

and structural support [5–7]. Gut bacteria is also seen 

involved in feeding, metabolic processes, immune 

response and digestive processes of higher organisms 

as revealed in recent studies [6, 7]. In fish, bacteria 

from the gut provide enzymes like amylase, lipase, 

cellulase, protease, chitinase etc. and thus play a 

significant role in digestion[8]. Especially the major 

source of cellulase in animal body is bacteria. Life 

span, physiology, immunity, and barriers against the 

pathogen in fish can also be influenced by the gut 

bacteria [9].  

 

Thus, gut bacteria can be termed as ‘extra organ’ as it 

plays an important role in physiology, intestinal as 

well as overall development of fish [10]. 

 

Various studies revealed that as fish grows it changes 

its feeding habit from omnivorous to carnivorous and 

thus changes its gut microbial content. Therefore it 

can be considered that the microbial diversity inside 

fish gut depends upon its age, diet, habitat, sex, stress 

etc. [11]. 

 

Several researchers such as [12-14] etc. reviewed the 

traditional method of absorption and digestion but 

these are not focused on gut bacteria-mediated 

digestion. Though few researches are available on 

enzyme producing gut bacteria of fishes they are 

mainly focused on one type of enzyme. Therefore, a 

compiled database of a few significant enzymes 

produced by the gut bacteria of fishes and their 

benefit in fish health is necessary.    

 

The microbial community reside inside fish body also 

act in disease resistance. B. thuringiensis, SS4 isolated 

from fish gut showed that it has high protease activity 

which makes it potential for using in medicine and 

food industries [15]. Similarly in a study on Blue 

morph fish e Lactobacillus acidophilus showed 

highest pathogen resistance among 4 different strains 

isolated [16]. Therefore, a cost-effective evaluation of 

bacteria with beneficial functions is needed [17, 18]. 

This review will provide an understanding of 

beneficial fish gut bacteria which help to improve its 

nutrition and health. It may also help in developing a 

practical strategy to engineer indigenous fish bacteria 

for enhancing fish health, immunity, nutrition and 

disease control. Rather than single microbial species, 

microbial consortia are considered to be associated 

with health [19]. Microbial consortia became popular 

in influencing the early growth and development of 

eukaryotic hosts [20]. Therefore, a compiled review is 

needed in which we can get an idea of beneficial 

miocrobes reside inside fish gut. Hence, this review 

will help in choosing bacterial strains for combination 

to make a beneficial bacterial consortium. 

 

In the GI tract of herbivorous, carnivorous and 

omnivorous fish species various studies have reported 

numerous microbial communities [3, 4, 21–28, 29–

36]. However, surprisingly, in the case of herbivorous 

fish, the endosymbiotic community and its health 

benefits are poorly investigated. [37-39] in their 

reviews only mentioned about these but there was no 

such broad information. Though [24, 40, 41 and 36] 

presented little information on studies of exogenous 

enzyme activity in fish, a more precise and 

comprehensive review is needed it was evident that 

the GI tract of fishes possesses a wide range of 

microbiota producing enzymes like Cellulase, 

Protease, Lipase, Amylase, Chitinase (Tables 1-5). 

Furthermore, the role of enzyme-producing fish gut 

bacteria as probiotics in the enhancement of food 

digestibility and their effect on gut enzyme activity 

has been evaluated through several investigations 

(Tables 7-8). 

 

In the present review, analysis of beneficial bacteria 

from the fish gut is addressed. The results cited 

include works published in renowned as well as 

minimally circulated and highly-priced journals so 

that people can access huge data at a low cost and 

time. This is performed to indicate that there are 

numerous interesting investigations published on the 

topic of enzyme-producing microorganisms isolated 

from the digestive tracts of fish. 

 

2. CELLULASE-PRODUCING GUT 

BACTERIA OF FISH 

 
Cellulase is an enzyme that converts or breaks 

polysaccharides into glucose or disaccharides. 

Shcherbina and Kazlauskiene (1971) first studied the 

presence of microbial cellulase in the distal intestine 

of common carp [42]. It has been proven that the 

primary source of cellulose in the gut of fish is 

microbiota; in the digestive tract of 42 different 

species they displayed cellulase activity and they 

suggested that microbiotas are a stable source of 

cellulolytic activity in these fishes [43]. Fishes 

utilizing cellulose and similar fibrous carbohydrates 

as cellulase activity has been reported in several fish 

species [44]. Symbiotic associations with 

microorganisms are required in the GI tract of many 

celluloses eating animals to digest cellulose and make 
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the energy [45, 46]. Saha and Ray (1998) reported 

cellulase-producing bacteria in the gut of fishes but 

they didn’t characterize it [47]. Further, the presence 

of cellulolytic bacteria has been documented in the GI 

tract of wood-eating catfishes, common carp and 

silver carp (Hypophthalmichthys molitrix) [30], rohu 

[47–50], murrel [49], grass carp [30, 51, 52], 

tilapia[51], catla and mrigal [50] and bata [50, 53]. 

From the proximal and distal intestine of three major 

carp isolated cellulase-producing autochthonous 

bacteria and the 16S rRNA gene sequence the most 

promising strains were analysed [54]. Further, 16S 

rRNA method was used to identify important 

cellulase-producing bacteria from the gut of grass 

carp and found that all of them belong to Aeromonas 

[55]. Generally, the presence of cellulolytic                    

bacteria in the gut of carnivorous fish is more                     

limited than the activity of cellulolytic bacteria in 

herbivorous fishes [56]. From the GI tract of marine 

fishes namely Carangoides praeustus, Filimanus 

similis, Sardinella longiceps and Sillago sihama four 

cellulolytic species of symbiotic bacteria were 

isolated [57]. 

 

From the Table 1 analysis, it can be drawn that fishes 

don’t usually produce cellulase enzyme, it is mainly 

provided by the gut bacteria. The herbivorous fishes 

produce more cellulase enzymes as they consume 

plant material. The most common strain that produces 

cellulase in fish is Bacillus. Therefore, the 

introduction of cellulase to fish food might positively 

affect growth, feed utilization and nutrient 

digestibility, potentially reducing feed costs. 

 

3. PROTEASE-PRODUCING BACTERIA 

IN FISH GUT 
 

Protease is an enzyme that breaks proteins and 

peptides. It was studied that proteolytic enzyme 

activity increases considerably when common carp fry 

are administered with bovine trypsin in their diet [60]. 

Thus, Hamid et al. (1979) and Trust et al. (1979) first 

studied the occurrence of proteolytic bacteria in the 

gut of grey mullet and grass carp [61, 62]. One isolate 

from the intestinal contents of Arabesque greenling 

(Pleurogrammus azonus), showed strong proteolytic 

activity; however, the isolate was identified as genus 

Pseudomonas and displayed the highest protease 

production at 10 °C, but as the cultivation temperature 

increases the activity decreased [63]. In-vitro study on 

enzyme-producing gut bacteria of Rohu fingerling 

showed that Bacillus circulans Lr 1.1, Bacillus 

pumilus Lr 1.2 and Bacillus cereus Lr 2.2, are great 

producers of proteolytic enzymes in the hindgut 

region of detritivorous carp (Labeo calbasu) [48]. 

Carnivorous Channa punctatus showed higher 

proteolytic enzyme activity as compared to 

herbivorous Labeo rohita while experimenting with 

enumerated heterotrophic bacteria from the GI tracts 

[49]. Studies showed that strains isolated from the 

distal intestine of three species of Indian major carps 

showed the highest proteolytic activity [54]. Analysis 

of gut microbiota in Labeo bata revealed that higher 

amylase-producing bacteria are found in the foregut 

region, whereas the hindgut region exhibit higher 

cellulolytic and proteolytic enzyme-producing 

bacterial populations [50]. On screening of enzyme-

producing autochthonous bacteria it was found that 

proteolytic activity was highest in Heteropneustes 

fossilis and bacteria found were mostly gram-positive 

and belong to bacillus sp. [64]. Armada and Simora 

(2016) obtained the highest protease activity at 25.32 

± 1.06 U/ mg protein and identified the strain as 

Pseudomonas spp. [65]. In a study on the gut bacteria 

of Clarias batrachus which is a carnivorous fish 

considerable amount of protease-producing bacteria 

were found in comparison to other enzyme-producing 

microbes [66]. In a study bacteria from freshly 

collected Channa aurantimaculata were found to be 

showing higher protease activity [11]. 

 

From the Table 2 analysis, it is evident that the 

protease-producing bacteria are majorly found in the 

hindgut region of fish. The carnivorous fishes show 

higher proteolytic activity than the herbivorous fish 

species and most of them belong to Bacillus and 

Pseudomonas. The proteolytic activity of these 

bacteria depends upon pH, temperature, and various 

environmental conditions. 

 

Table 1. Cellulase-producing bacteria from GI tract of different fishes 

 

Microorganisms Isolated from Reference 

Bacillus circulans; B. pumilus; B. Cereus Labeo rohita [48] 

Bacillus circulans, B. megaterium Oreochromis mossambica, Ctenopharyngodon 

idella 

[51] 

Bacillus licheniformis; B. Subtilis Labeo bata [50] 

Citrobacter sp.; Enterobacter sp.; Bacillus 

coagulans 

Species of major Indian carp [54] 

Aeromonas sp. Ctenopharyngodon idella [55] 

Bacillus subtilis, B. velesensis Piaractus esoiptamicus, Leporinus friderici. [58] 
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Bacillus thuringiensis, B. cereus, Bacillus sp Salmo salar [59] 

Table 2. Protease-producing bacteria from the GI tract of different fishes 

 

Microorganism Isolated from Reference 

Enterobacter spp, Vibrio spp, Pseudomonas spp, Acinetobacter 

spp, Aeromonas spp. 

Mugil cephalus [61] 

Strict anaerobes and Aeromonas hydrophila Ctenopharyngodon idella [62] 

Vibrio spp. Centropristis striata [67] 

Pseudomonas sp. Pleurogrammus azonus [63] 

Flavobacterium balustinum Salmo salar [68] 

Bacillus cereus; B. circulans; B. pumilus Labeo rohita [69] 

Bacillus cereus Nine different freshwater 

teleosts 

[30] 

Pseudoalteromonas spp Merluccius hubbsi [70] 

Aeromonas spp, Enterobacteriaceae, Pseudomonas spp, 

Flavobacterium spp, Micrococcus spp 

Rutilus rutilus [71] 

Bacillus cereus Mugil cephalus [72] 

Citrobacter spp, Enterobacter spp, Bacillus coagulans Three major Indian carp [54] 

Bacillus licheniformis, B. subtilis Labeo bata [50] 

Bacillus thuringiensis, Bacillus cereus, Bacillus spp. Gadus morhua [73] 

 

Table 3. Lipase-producing bacteria from the GI tract of different fishes 

 

Microorganism Isolated from Reference 

Strict anaerobes; Aeromonas hydrophila Ctenopharyngodon idella [62] 

Agrobacterium; Pseudomonas; Brevibacterium; 

Microbacterium; Staphylococcus 

Salvelinus alpinus [40] 

Vibrio spp., Acinetobacter spp. Enterobacteriaceae, 

Pseodomonas spp 

Dicentrarchus labrax larvae [67] 

Vibrio spp. Salvelinus alpinus [76] 

Bacillus thuringiensis, Bacillus cereus, Bacillus spp. Salmo salar [73] 

 

4. LIPASE-PRODUCING BACTERIA IN 

FISH GUT 

 
Lipase is a family of an enzyme that catalyses                       

the breakdown of fats. In GI tracts the microbiota 

helps in the absorption efficiency of lipids. Bacterial 

strains isolated from the GI tract of grass carp show 

lipolytic activity which was strict anaerobes and 

Aeromonas hydrophila [62]. It has been proven that 

the Vibrio spp is one of the major strain showing 

lipase activity which was isolated from sea bass 

larvae, but 25% of the gut isolates showed lipase 

activity were classified as Acinetobacter, 

Enterobacteriaceae and Pseudomonas [67].                       

Lipase activity has been reported in the gut                       

content or gut of most fish species studied,                           

and it seems obvious if lipase activity is present then 

most of the intestinal lipase activity is located in the 

pyloric caeca and the proximal intestine [74]. In a 

study the maximum lipolytic activity was found in 

silver carp (Hypophthalmichthys molitrix) while 

investigating the gut bacteria of nine freshwater 

teleosts [30]. Mohan et al., (2012) also found that 

most of the lipase producing bacteria are belong to 

Vibrio spp. [75]. 

From this (Table 3) review, it can be drawn that most 

lipase-producing bacteria reside in the proximal 

portion of the gut. In the case of lipase activity, the 

dominant strains are Vibrio and Bacillus. 

 

5. AMYLASE-PRODUCING BACTERIA IN 

FISH GUT 

 
The enzyme amylase catalyses the hydrolysis of 

starch into sugar. Trust et al. (1979) first reported the 

occurrence of amylase-producing bacteria in the gut 

of grass carp (Ctenopharyngodon idella) [62]. In 

general, bacteria from the digestive tract of 

omnivorous fish show relatively higher amylase 

activity than that of carnivorous fish [77, 78], but 

dietary manipulation also affects its activity [77-80]. 

Das and Tripathi (1991) demonstrate the presence of 

amylase producing bacteria in the gut of various 

fishes but they did not characterize them [81]. Vibrio 

spp. is responsible for amylase production in sea bass 

(Dicentrarchus labrax) larvae [67]. Studies showed 

intestinal microbiota of cultured ayu (Plecoglossus 
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altivelis), common carp (Cyprinus carpio), channel 

catfish (Ictalurus punctatus), Japanese eel (Anguilla 

japonica) and tilapia (Oreochromis niloticus) produce 

amylase and 65 isolates out of 206 i.e 31.6% produces 

more than 0.01 U amylase ml
-1 

and they were 

characterized as Aeromonas spp., Bacterioidaceae 

and Clostridium spp. [82].
 
Grass carp, common carp 

and tilapia (Oreochromis mossambica) were observed 

for showing higher densities of amylolytic activity but 

amylolytic strains were not seen in the GI tract of 

carnivorous fish catfish (Clarias batrachus) and 

murrel (Channa punctatus) [30]. An in-vitro study 

suggested that Bacillus cereus, Bacillus circulans and 

Bacillus pumilus were isolated from rohu fish and 

they were good producers of the amylolytic enzyme 

[48]. Skrodenyte-Arbaciauskiene (2007) isolated 60 

different strains of adult roach (Rutilus rutilus) fish 

gut bacteria and a total of 34 showed in vitro 

amylolytic activity [83]. Though Kar and Ghosh 

(2008) reported amylase producing bacteria in the gut 

of Rohu and Murrel they did not identify them and 

further, Mondal et al. (2008) when documented found 

that foregut has more amylase producing bacteria in 

case of Labeo calbasu and Labeo bata in comparision 

to hind gut [49, 53]. A large population of amylase 

producing bacteria were detected in the GI tract of 

three Indian major carps, catla (Catla catla), mrigal 

(Cirrhinus mrigala) and rohu (Labeo rohita), the 

bacteria isolated from the proximal intestine of Catla 

and Mrigal showed considerably higher amylase 

production [54]. In a study it was found that the 

amylase activity of Pseudomonas sp. isolated from 

Atlantic cod is highest with 5.640 U mL
-1 

[84]. In an 

in-vitro study it was found that in Cirrhinus mrigala 

amylolytic bacteria were found to be highest and they 

were identified as Bacillus amyloliquefaciens[85]. 

The gut bacteria of omnivorous fishes shows higher 

activity in producing alpha amylase [86]. 

 

This review revealed that amylase-producing bacteria 

are found in omnivorous fishes more than in 

carnivorous and herbivorous fishes but the enzyme 

production varies with diet manipulation. The 

microorganisms which are a major producer of 

amylase reside in the foregut rather than the hind gut 

and these belong to Bacillus and Aeromonas spp. 
 

6. CHITINASE-PRODUCING GUT 

BACTERIA IN FISH 
 

Glycosidic bonds in Chitins are hydrolysed by 

Chitinase. In the intestine of a marine teleost, 

Lateolabrax spp. chitinolytic bacteria were recorded 

for the first time [87]. The whole GI tract is reported 

to be showing Chitinolytic activity but the stomach 

and pyloric tissue show higher activity, indicating that 

these organs or the diet are the main sources of the 

enzymes [88]. Enterobacter, Vibrio and Pseudomonas 

were considered bacteria with chitinolytic activity 

while performing experiments with Gray murrel [61]. 

It was reported that Aeromonas spp., and Vibrio spp. 

are chitinase-producing bacteria isolated from the GI 

tract of tilapia [89]. On the gut microbiota of Dover 

sole (Solea solea L.), it was found that the strains 

which belong to Acinetobacter, Enterobacteriaceae, 

Photobacterium and Vibrio. Study on tilapia 

(Sarotherodon niloticus). It was observed that 

Aeromonas caviae, Aeromonas hydrophila, 

Aeromonas jandaei, Aeromonas sobria and 

Aeromonas veroni isolated from common carp, 

crucian carp and gray mullet displayed chitinase 

activity [90]. The study of Sugita & Ito (2006), 

reported that 98.8% out of total isolates from the 

Japanese flounder intestine showed chitinolytic 

activity and they were identified as Vibrio fischeri, 

Vibrio harveyi and the Vibrio scophthalmi – Vibrio 

ichthyoenteri group [91]. In a study it was found that 

Pseudomonas spp. isolated from the gut of Atlantic 

cod can produce different enzymes like- Amylase, 

Cellulase, Protease, Chitinase etc. 0.085 U Ml
-1 

chitinase is the least producing enzyme [84]. 

 

Table 4. Amylase-producing bacteria from GI tract of different fishes 

 

Microorganism Isolated from Reference 

Strict anaerobes and Aeromonas hydrophila Ctenopharyngodon idella [62] 

Vibrio spp. Dicentrarchus labrax larve [67] 

Aeromonas spp, Bacteroidaceae, Clostridium 

spp. 

Plecoglossus altivelis, Ictalurus punctatus, 

Cyprinus carpio, Anguilla japonica, 

Oreochromis niloticus 

[82] 

Bacillus circulans, B. pumilus, B. cereus Labeo rohita [48] 

Aeromonas spp, Enterobacteriaceae; 

Pseudomonas spp, Flavobacterium spp 

Rutilus rutilus [83] 

Bacillus licheniformis, Bacillus subtilis Labeo bata [50] 

Citrobacter spp, Enterobacter spp., Bacillus 

coagulans, Bacillus cereus. 

Catla catla, Cirrhinus mrigala. Labeo rohita [54] 

Bacillus thuringiensis, B. cereus, Bacillus spp,, Salmo salar [59] 
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Bacillus subtilis and Acinetobacter spp. 

 

Table 5. Chitinase-producing bacteria from GI tract of different fishes 

 

Microorganism Isolated from Reference 

Enterobacter spp., Vibrio spp., Pseudomonas spp Mugil cephalus [61] 

Aeromonas spp., and Vibrio spp. Oreochromis niloticus [89] 

Acinetobacter spp., Enterobacteriaceae, Flavobacterium spp., 

Photobacterium spp., Vibrio spp. 

Solea solea [92] 

Plesiomonas shigelloides and Aeromonas hydrophila Oreochromis niloticus [93] 

Aeromonas caviae, A. hydrophila, A. jandaei, A. sobria and A. 

veroni 

Carassius Carassius, Mugil 

cephalus, Cyprinus carpio 

[90] 

Marinobacter lutaoensis, Ferrimonas balearica, 

Pseudoalteromonas piscicida, Enterovibrio norvegicus, 

Grimontia hollisae, Photobacterium damselae spp. damselae,       

P. leiognathi, P. lipolyticum, P. phosphoreum, P. rosenbergii, 

Vibrio campbelli, V. chagasii, V. fischeri, V. fortis, V. gallicus, 

V. harveyi, V. natrigenes, V. nigripulchritudo, V. ordalii, V. 

parahaemolyticus, V. pomeroyi, V. ponticus, V. proteolyticus, 

V. rumoiensis, V. shilonii, V. tasmaniensis and V. tubiashii 

Various Japanese costal 

fishes 

[94] 

Vibrio fischeri, V. harveyi, V. scophthalmi, V. iscthyoenteri 

group type 1, V. scophthalmi, V. iscthyoenteri group type 2 and 

V. scophthalmi, V. iscthyoenteri group type 3 

Paralichthys olivaceus [91] 

Bacillus thuringiensis, Bacillus cereus, Bacillus spp., Bacillus 

subtilis and Acinetobacter spp. 

Salmo salar  

[73] 

 

From the Table 5 observation and review, it is evident 

that Chitinolytic activity is reported to be present 

throughout the GI tract, and high activity is localized 

in the stomach and pyloric tissue, indicating that these 

organs or the diet are the main sources of the 

enzymes. Most common chitinase-producing 

microorganisms belong to Aeromonas, Vibrio, 

Photobacterium and Bacillus.  

 

7. ROLE OF MICROBIOTA IN 

DIGESTION, IMMUNITY AND 

DEVELOPMENT OF FISHES 
 

Microbiota largely influence the development of 

tissue and organ in animals. Enzymes produced by the 

intestinal microflora in addition to the endogenous 

sources play a significant role in digestion, especially 

in the case of plant materials such as cellulose [96]. A 

study established that the GI microbiota of pinfish 

(Lagodon rhomboides) contribute to the breakdown of 

plant material [27]. The presence of a high 

concentration of Aeromonas in the GI tract can play 

an important role in digestion as Aeromonas species 

secrete several proteases and chitinase [90, 97]. Wang 

and Xu (2006) showed a significant difference (P < 

0.05) in digestive enzyme activity; protease, amylase 

and lipase in common carp by using Bacillus sp. as 

probiotics [98]. When beneficial bacteria are used 

with fish feed digestibility, growth and protein 

efficiency of fish increases because bacteria produce 

digestive enzymes along with it increase in 

leukocytes, monocyte, erythrocyte etc. and trigger 

non-specific immunity [99]. In a later study, four 

different inclusion levels of Bacillus subtilis isolated 

from Cirrhinus mrigala used on survival, feed 

conversion ratio, specific growth rate, proximate 

composition, intestinal amylase and protease activity 

of four live-bearing ornamental fishes. Length, 

weight, survival, body ash and protein content and gut 

enzyme activity were significantly improved by 

including bacilli in the diets, Moreover, improved 

disease resistance against Aeromonas hydrophila 

infection was noticed in fish-fed bacilli [100]. Sun et 

al., (2009) reported that bacteria in the fish gut have a 

significant role in the digestion of food as well as in 

the immunity of their hosts [101]. Bacteria which can 

produce enzymes help in the digestion of 

carbohydrates, proteins, and especially the substrate 

like cellulose which can be digested only by a few 

animals. According to Ray et al. (2012), the 

extracellular enzyme-producing bacteria in fish gut 

show positive effects on the digestive processes of the 

host [8]. 

 

Mutualistic or pathogenic relationships are the most 

common type of relationship between fish and 

surrounding microorganisms. In immune defense, 

metabolic homeostasis, and nutritional provisioning 

gut microbiota plays an important role in fishes, 

humans and other mammals [102, 103]. Moreover, 

several studies indicated that the fish gut bacteria are 
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linked with disease resistance whereas the fish with 

disturbed gut microbial composition due to changes in 

feed or antibiotic treatment increases its susceptibility 

towards pathogens and developed with declined 

immunity and nutrition [104–106]. Exogenous 

enzymes can be produced by the gut microbes which 

facilitate the digestion of complex and large 

molecules, such as protein, chitin and starch [107]. In 

zebrafish, gut bacteria provides direct evidence of 

epithelial cell proliferation and plays important role in 

GIT development [108]. Askarian et al., (2011) 

displayed that beluga (Huso huso) and Persian 

sturgeon (Acipenser persicus) when fed with two 

lactic acid bacteria (Lactococcus curvatus and 

Leuconostoc mesenteroides), it enhanced specific 

growth rate, survival and an increase in the digestive 

enzyme (amylase, protease and lipase) [109]. It is well 

studied that probiotics and enzyme-producing bacteria 

in fish gut influence reproduction in factors like 

fertilization, gonadosomatic index, fecundity, and 

production of fry from the females [110]. Similar 

studies have shown that the bacteria of the gut may 

involve in the development of gonads as well as the 

subsequent reproductive success of the host. For 

example, Lactobacillus rhamnosus improves the 

larval development of zebra fishes as well as 

improves growth and sex differentiation when 

administered continuously from birth to sexual 

maturation [111, 112]. 

 

 
 

Fig. 1. Bar diagram showing abundance of enzyme producing bacteria according to their feeding habit 
 

Table 6. List of some common bacterial strains found in some fish gut 
 

Fish species Bacterial strain References 

Ctenopharyngodon Idella (grass carp) Aeromonas spp. [55] 

Labeo rohita (Rohu)  Bacillus circulans, Bacillus pumilus Bacillus cereus [48] 

Heteropneustes fossilis (Asian stinging 

catfish)   

Bacillus spp. [64] 

Clarias batrachus (walking catfish) Pseudomonas spp. [65] 

Dicentrarchus labrax (European 

seabass) 

Vibrio spp., Acinetobacter spp., Enterobacteriaceae 

spp., Pseudomonas spp. 

[67] 

Ictalurus punctatus (channel catfish) Aeromonas spp. [82] 

Oreochromis mossambica 

(Mozambique tilapia) 

Bacterioidaceae spp., Clostridium spp. [82] 

Cirrhinus mrigala (mrigal carp ) Bacillus amyloliquefaciens [85] 

Gadus morhua (Atlantic cod) Pseudomonas spp. [84] 

Channa striata ( striped snakehead) Enterobecter spp., Pseudomonas spp., Vibrio spp. [61] 

Sarotherodon niloticus (Nile tilapia) Plesiomonas shigelloides, Aeromonas hydrophila [89] 

Chanos chanos (Milkfish) Pseudomonas spp., Vibrio spp 

Enterobacteriaceae 

[95] 

Carassius carassius (crucian carp) 

 

Aeromonas caviae, Aeromonas hydrophila, 

Aeromonas jandaei, Aeromonas sobria, Aeromonas 

[90] 
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 veroni. 

Paralichthys olivaceus (olive flounder) Vibrio fischeri, Vibrio harveyi, Vibrio scophthalm, 

Vibrio ichthyoenteri 

[91] 

 
 

Fig. 2. Diagram showing some common bacterial strain and their contribution in percentage to the type of 

enzyme they are producing 

 

Table 7. Gut bacteria and their beneficial effect on fish 

 

Name of the bacteria Beneficial effect Reference 

Lactobacillus rhamnosus Enhance immunity and reduce disease susceptibility, improve 

blood quality. 

[122] 

Streptococcus spp. Improve feeding efficiency and growth rate. [123] 

Bacillus amyloliquefaciens Enhance antibody concentration, and reduce stress. [124] 

Lactobacillus spp. Reduce pathogen load. [106] 

Bacillus cereus Protect from Aeromonas hydrophilia infection. [125] 

Bacillus spp. Reduce the load of ammonia and nitrate. [126] 

Nitrosomonas spp. Reduce pathogen load. [127] 

Enterococcus faecium Enhance immunity. [128] 

Bacillus subtilis Enhance cellular immunity. [129] 

Alcaligenes spp. Enhance volatile short-chain fatty acids. [130] 

 

It has been proven through experiment that in grass 

carp (Ctenopharyngodon idella) the change in the 

composition of gut bacteria, biosynthesis, and 

metabolic pathways of carbohydrates, amino acids 

and lipids also change [113]. Further, In a study on 

zebrafish, it was observed that the epithelial 

absorption of fatty was promoted by the colonization 

of gut bacteria [114]. When a fish is growing from 

egg to larvae to adult the bacterial composition also 

changes and increases [115].  

 

Bacteriocin nisin Z was produced from Lactococcus 

lactis isolated from some marine fishes, which can 

prevent the development of the fish microbe 

Lactococcus garvieae at 5 AU mL-1. Because of this, 

it becomes a promising option for the prevention of 

lactococcosis [116]. A bacterium Centroscyllium 

fabricii isolated from the deep sea shark was               

found to have an antagonistic activity in the fish gut 

[117]. 

 

Nile tilapia (Oreochromis niloticus) fed with a 

probiotic strain of Lactobacillus sp. shows 

enhancement of crude lipid, total protein, and body 

weight [118]. Growth and survival rate increase in 

Xiphophorus helleri, Xiphophorus maculates, and 

Poecilia reticulate fed with probiotic supplemented 

food containing Bacillus subtilis and Streptomyces sp. 
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[119]. According to He et al. (2017) Bacillus and 

Lactobacillus, two common probiotic genera of 

bacteria used in aquaculture, can stimulate the 

expression of inflammatory cytokines in the fish gut 

[106]. In Javanese carp (Puntius gonionotus), 

significant weight gain can be seen in fishes fed with 

Enterococcus faecalis compared to the control group 

of carp [120]. The enzyme-producing bacteria from 

the gut of experimental fish may play an important 

role in the digestion process of the fish [121]. 

 

 
 

Fig. 3. Schematic representation of screening process for potential probiotic gut bacteria 
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Fig. 4. Showing factor influencing gut bacteria of fishes along with potential function and future 

perspective 

Table 8. Some species-specific bacterial strains and their benefits on fish health 

 

Name of the fish Dominant Strain Benefit Reference 

Japanese eel (Anguilla japonica), 

carp (Cyprinus carpio), goldfish 

(Carassius auratus), channel catfish 

(Ictalurus punctatus) Ayu 

(Plecoglossus altivelis) and tilapia 

(Tilapia nilotica) 

Bacteroides type A producing vitamin B12 [131] 

Ayu (Plecoglossus altivelis), carp 

(Cyprinus carpio), channel catfish 

(Ictalurus punctatus), Japanese eel 

(Anguilla japonica) and Tilapia 

(Tilapia nilotica)  

Aeromonas, 

Bacteroidaceae and 

Clostridium  

Producing amylase that 

plays an important role 

in the digestion of starch 

[82] 

Rohu (Labeo rohita) and catla 

(Catla catla) 

Enterococcus faecalis and 

Pediococcus acidilactici 

Ferment fish processing 

waste 

[132] 

Rohu (Labeo rohita), Mrigal 

(Cyrrhinus mirgala) and Tilapia 

(Oreochromis mossambicus) 

Enterobacter asbura, 

Pichia kudriavzevii, 

Candida tropicalis and 

Candida parapsilosis 

Produce tannase to 

overcome the 

antinutritional factors in 

the feedstuffs. 

[133] 

 

8. CONCLUSION 
 

From this review, it is evident that various gut 

bacteria of fishes helps in growth, digestion, 

immunity, disease resistance etc. Therefore, it can be 

recommended to use these beneficial bacteria as 

probiotics. When it comes to the hypotheses of 

whether the gut microbiota can contribute to nutrition 

or not, it can be concluded that gut microbiota may 

contribute to nutrition to some extent in-vivo but 

further investigations are required related to the fact 

that in-vitro and industrial use of these can be 

beneficial or not. Although a huge number of bacteria 

are associated with the gut of fish beneficial bacteria 

are more important. It is revealed from the review that 

Carp fishes have most studies on enzyme-producing 

gut bacteria therefore, the contribution of other fish 

specie’s gut bacteria is need to be studied. The major 

benefit of cellulase producing bacteria is that it helps 

in digestion of plant material as most of the animal 

cannot produce its own cellulase. But further cellulase 

producing bacteria such as Bacillus spp. can also be 

beneficial for fish in growth, immunity etc. Similarly, 

various Aeromonas spp. produce chitinase, amylase 

and protease as well. From the review it has been 

noted that the benefits of enzyme producing bacteria 

are described vaguely. Therefore, some specific 

information and research are necessary on each 

enzyme producing bacteria and their significance on 

fish health. As these clear understanding may lead to 

proper use of these bacteria in production of 

commercial fish feed. The study on chitinase 

producing fish gut bacteria needs more focused study 

as it might be useful as a constitutive material in 

formulated fish feed. The influence of chitin on 

disease resistance, susceptibility and innate immune 

parameters etc. are still not fully understood and 

require further investigation. Over the last 20 years, 

various comprehensive review papers have been 

published targeting the use of probiotics related to 

immunity, growth, and prevention of diseases and 

bacteria. From our point of view, we recommend the 

use of mixture of beneficial bacteria (consortium) to 

evaluate growth, feed conversion rate, gut enzyme 

activity, gut maturation, gut immunity, modulation of 

the gut microbiota and disease resistance. For 

formulation of such beneficial probiotic consortia this 

review will play a significant role in providing data. 
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