Main Article Content



The present study investigated the impact of sublethal concentrations (60, 100 and 140ppm) of SiO2 nanoparticle on freshwater fish Oreochromis mossambicus, an environmentally relevant and commonly available fish. Acute studies on the plasma renal markers revealed a dose dependent elevation of urea and creatinine level in the treated fishes compared to that of control group, which indicated a possible damage to the renal tissues of the fishes. Further histopathological studies revealed alterations in bowman’s capsule, glomerulus, sinusoidal space, vacuolated proximal and distal tubules, haemorrhage, membrane damages in blood cells, deposition of melanomacrophages and degeneration of renal tubules, which helped us to ascertain the toxicological effects of SiO2 nanoparticle.

SiO2 nanoparticle, histology, fish kidney, Oreochromis mossambicus

Article Details

How to Cite
Original Research Article


Stuart EJ, Compton RG. Nanoparticles-emerging contaminants. In: Environmental Analysis by Electrochemical Sensors and Biosensors Springer, New York, NY. 2015; 855-878.

Hegde K, Goswami R, Sarma SJ, Veeranki VD, Brar SK. Nano-ecotoxicology of natural and engineered nanomaterials for different ecosystems. Nanomaterials in the environment, 1st edn. American Society of Civil Engineers, Reston. 2015;487-511.

Liao CM, Ling MP. Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Archives of Environmental Contamination and Toxicology. 2003;45(2):264-72.

Oğuz AR. A histological study of the kidney structure of Van fish (Alburnus tarichi) acclimated to highly alkaline water and freshwater. Marine and Freshwater Behavior and Physiology. 2015;48 (2):135-44.

McCampbell KK, Wingert RA. New tides: using zebrafish to study renal regeneration. Translational Research. 2014;163(2):109-22.

Mohammod Mostakim G, Zahangir M, Monir Mishu M, Rahman M, Islam MS. Alteration of blood parameters and histoarchitecture of liver and kidney of silver barb after chronic exposure to quinalphos. Journal of toxicology. 2015;8. [Article ID 415984]

Cengiz EI. Gill and kidney histopathology in the freshwater fish Cyprinus carpio after acute exposure to deltamethrin. Environmental Toxicology and Pharmacology. 2006;22(2): 200-4.

Kobayashi I, Kondo M, Yamamori S, Kobayashi-Sun J, Taniguchi M, Kanemaru K, Katakura F, Traver D. Enrichment of hematopoietic stem/progenitor cells in the zebrafish kidney. Scientific Reports. 2019; 9(1):1-1.

Boyle D, Al-Bairuty GA, Henry TB, Handy RD. Critical comparison of intravenous injection of TiO2 nanoparticles with waterborne and dietary exposures concludes minimal environmentally-relevant toxicity in juvenile rainbow trout Oncorhynchus mykiss. Environmental Pollution. 2013;182:70-9.

Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA, Vernekar SN. Markers of renal function tests. North American Journal of Medical Sciences. 2010;2(4):170-3.

Rahmati-Holasoo H, Masoudifard M, Ebrahimzadeh Mousavi H, Shokrpoor S, Tavakkoli A, Farazandemehr MS. Cystic lesions in the kidney of flower horn fish, hybrid cichlid. J Fish Dis. 2015;38(9):833–838.

Salazar-Lugo R, Vargas A, Rojas L, Lemus M. Histopathological changes in the head kidney induced by cadmium in a neotropical fish Colossoma macropomum. Open Vet J. 2013; 3(2):145-50.

Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research. 2013;15(6):1692–1709.

Zhang Y, Leu YR, Aitken RJ, Riediker M. Inventory of engineered nanoparticle-containing consumer products available in the Singapore retail market and likelihood of release into the aquatic environment. International Journal of Environmental Research and Public Health. 2015;12(8):8717-43.

Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquatic Toxicology. 2010;100(2):218-28.

Ramesh R, Kavitha P, Kanipandian N, Arun S, Thirumurugan R, Subramanian P. Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio). Environmental Monitoring and Assessment. 2013;185(7):5873-81.

Krishna Priya K, Ramesh M, Saravanan M, Ponpandian N. Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Na+/K+ ATPase activity. Ecotoxicology and Environmental Safety. 2015;120:295-302.

Vidya PV, Chitra KC. Irreversible nanotoxicity of silicon dioxide nanoparticles in the freshwater fish Oreochromis mossambicus (Peters, 1852). Asian Fisheries Science. 2018; 31(2):146-160.

Vidya PV, Chitra KC. Sublethal effects of silicon dioxide nanoparticles on the structure of gill, liver and brain tissues in the fish, Oreochromis mossambicus (Peters, 1852). Int J Appl Res. 2018;4(4):228-32.

Murali M, Suganthi P, Athif P, Sadiq Bukhari A, Syed Mohamed HE, Basu H, Singhal RK. Histological alterations in the hepatic tissues of Al2O3 nanoparticles exposed freshwater fish Oreochromis mossambicus. Journal of Trace Elements in Medicine and Biology. 2017;44:125-31.

FAO. Fisheries and Aquaculture Department; 2012.
[Accessed on 01.04.2020]

Global Invasive Species Database. Oreochromis mossambicus; 2006.
Available:http://www.issg. org/database/species/ecology. asp?si=131&fr=1&sts=〈=EN
[Accessed on 01.08.2019]

Karthigarani M, Navaraj PS. Impact of nanoparticles on enzyme activity in Oreochromis mossambicus. Int. J. Sci. Technol. Res. 2012;1:13–17.

Welsh PG, Lipton J, Mebane CA, Marr JC. Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout. Ecotoxicology and Environmental Safety. 2008;69(2):199-208.

Gabriel UU, Akinrotimi OA, Eseimokumo F. Haematological responses of wild Nile tilapia Oreochromis niloticus after acclimation to captivity. Jordan Journal of Biological Sciences. 2011;4:225–230.

Ghayyur S, Tabassum S, Ahmad MS, Akhtar N, Khan MF. Effect of Chlorpyrifos on Hematological and Seral Biochemical Components of Fish Oreochromis mossambicus. Pakistan Journal of Zoology. 2019; 51(3):1047-1052.

Gautier JC(Ed.) Drug Safety Evaluation: Methods and Protocols, Methods in Molecular Biology. Springer Science+Business Media, LLC. 2011;691.

Hadi A, Shokr A, Alwan S. Effects of aluminum on the biochemical parameters of fresh waterfish Tilapia zillii. J. Sci. Appl. 2009;3(1):33-41.

Abdel-Daim MM, Eissa IA, Abdeen A, Abdel-Latif HM, Ismail M, Dawood MA, Hassan AM. Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environmental Toxicology and Pharmacology. 2019;69:44-50.

Abdel-Khalek AA, Kadry M, Hamed A, Marie MA. Ecotoxicological impacts of zinc metal in comparison to its nanoparticles in Nile tilapia Oreochromis niloticus. The Journal of Basic & Applied Zoology. 2015;72:113–125.

Alkaladi A, El-Deen NA, Afifi M, Zinadah OA. Hematological and biochemical investigations on the effect of vitamin E and C on Oreochromis niloticus exposed to zinc oxide nanoparticles. Saudi Journal of Biological Sciences. 2015;22(5):556-63.

Ibrahim AT. Toxicological impact of green synthesized Silver nanoparticles and protective role of different Selenium type on Oreochromis niloticus: Hematological and biochemical response. Journal of Trace Elements in Medicine and Biology. 2020;126507.

Mahmoud UM, Mekkawy IA, Ibrahim AT. Biochemical response of the African catfish, Clarias gariepinus (Burchell, 1822) to sublethal concentrations of mercury chloride with supplementation of selenium and vitamin E. Toxicology and Environmental Health Sciences. 2012;4(4):218-34.

Sayed AE, Moneeb RH. Hematological and biochemical characters of monosex tilapia (Oreochromis niloticus, Linnaeus, 1758) cultivated using methyltestosterone. The Journal of Basic & Applied Zoology. 2015; 72:36-42.

Mutlu E, Aydın S, Kutlu B. Alterations of growth performance and blood chemistry in nile tilapia (Oreochromis nuoticus) affected by copper sulfate in long-term exposure. Turkish Journal of Fisheries and Aquatic Sciences. 2015;15:487-493.

Ajeniyi SA, Solomon RJ. Urea and creatinine of Clarias gariepinus in three different commercial ponds. Nat Sci. 2014;12(10):124-38.

Murali M, Athif P, Suganthi P, Sadiq Bukhari A, Syed Mohamed HE, Basu H, Singhal RK. Toxicological effect of Al2O3 nanoparticles on histoarchitecture of the freshwater fish Oreochromis mossambicus. Environmental Toxicology and Pharmacology. 2018;59:74-81.

Gupta YR, Sellegounder D, Kannan M, Deepa S, Senthilkumaran B, Basavaraju Y. Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): Biochemical, histological and proteomic approaches. Aquaculture and Fisheries. 2016;1:15-23.

Kaya H, Duysak M, Akbulut M, Yılmaz S, Gürkan M, Arslan Z, Demir V, Ateş M. Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus). Environmental Toxicology. 2017;32(4):1213-25.

Sayed AH, Younes HA. Melanomacrophage centers in Clarias gariepinus as an immunological biomarker for toxicity of silver nanoparticles. Journal of Microscopy and Ultrastructure. 2017;5(2):97-104.

Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology. 2013;126:104-15.

Aghamirkarimi S, Mashinchian Moradi A, Sharifpour I, Jamili S, Ghavam Mostafavi P. Sublethal effects of copper nanoparticles on the histology of gill, liver and kidney of the Caspian roach, Rutilus rutilus caspicus. Global Journal of Environmental Science and Management. 2017;3(3):323-332.

Chupani L, Niksirat H, Velíšek J, Stará A, Hradilová Š, Kolařík J, Panáček A, Zusková E. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicology and Environmental Safety. 2018;147:110-6.

Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z. A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere. 2016;144:571-82.

Camargo MM, Martinez CB. Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotropical Ichthyology. 2007;5(3):327-36.

Mishra AK, Mohanty B. Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environmental Toxicology and Pharmacology. 2008;26(2):136-41.

Kaya H, Çelik EŞ, Gürkan M, Yılmaz S, Akbulut M. Effects of subchronic exposure to phosalone on oxidative stress and histopathological alterations in common carp (Cyprinus carpio, L., 1758). Journal of Toxicology and Environmental Health, Part A. 2013;76(14):853-64.

Suresh N. Effect of cadmium chloride on liver, spleen and kidney melano macrophage centres in Tilapia mossambica. Journal of Environmental Biology. 2009;30(4):505-508.

Mustafa SA. Histopathology and heavy metal bioaccumulation in some tissues of Luciobarbus xanthopterus collected from Tigris River of Baghdad, Iraq. The Egyptian Journal of Aquatic Research. 2020 (In Press).

Mahboob S, Al-Ghanim KA, Al-Balawi HF, Al-Misned F, Ahmed Z. Toxicological effects of heavy metals on histological alterations in various organs in Nile tilapia (Oreochromis niloticus) from freshwater reservoir. Journal of King Saud University-Science. 2020;32(1): 970-3.

Kaur S, Khera KS, Kondal JK. Heavy metal induced histopathological alterations in liver, muscle and kidney of freshwater cyprinid, Labeo rohita (Hamilton). Journal of Entomology and Zoology Studies. 2018;6(2): 2137-44.